

Ab initio CALCULATIONS OF THE ROTATION-VIBRATION SPECTRUM OF Na_3^+

Ladislav ČEŠPIVA^a, Vlasta BONAČIČ-KOUTECKÝ^a, Jaroslav KOUTECKÝ^a, Per JENSEN^b, Vojtěch HROUDA^c, Petr ČÁRSKY^c, Vladimír ŠPIRKO^c and Pavel HOBZA^c

^aInstitut für Physikalische und Theoretische Chemie,

Freie Universität Berlin, Takustrasse 3, D-1000 Berlin 33, Germany

^bPhysikalisch-Chemisches Institut,

Justus Liebig Universität Giessen, Heinrich-Buff-Ring 58, D-6300 Giessen, Germany

^cThe J. Heyrovský Institute of Physical Chemistry and Electrochemistry,

Czechoslovak Academy of Sciences, 182 23 Prague 8, Czechoslovakia

Received March 2, 1992

Accepted April 21, 1992

Dedicated to Professor Václav Horák on the occasion of his 70th birthday.

SCF, 6C-SCF, MP4 and valence-electron full CI calculations were performed in order to determine the potential surface of Na_3^+ . A power series in the variables $y_i = 1 - \exp(-a\Delta r_i)$, where Δr_i are bond length displacements from equilibrium, has been fitted through the surface obtained and used in a variational rotation-vibration calculation with a basis set of products of Morse-oscillator eigenfunctions and symmetric top rotational wave functions. In contrast to H_3^+ , Na_3^+ behaves as a very rigid molecule and does not exhibit any anomalous anharmonicity. With our best potential surface, MP4, the predicted E' and A_1' fundamental frequencies are 105.1 and 146.7 cm^{-1} , and the harmonic E' and A_1' frequencies are 106.5 and 148.3 cm^{-1} .

The objective of this paper is twofold. Primarily it represents a continuation of the long-term project on alkali metal clusters pursued in Berlin^{1,2}. Secondly, Na_3^+ is also of spectroscopic interest on its own right. The archetype of equilateral triangular molecules, H_3^+ , exhibits an unusually high anharmonicity of stretching vibrations and if accurate rotation-vibration energies of H_3^+ are to be obtained, the standard polynomial expansion of the potential energy function must be abandoned and a power series of the Morse-oscillator-like functions must be used instead^{3,4}. We treat here Na_3^+ in order to investigate whether these problems also occur for other equilateral X_3 molecules.

CALCULATIONS

We have employed several different methods of calculation to investigate the effect of the basis set and the electron correlation, and also a possible near-degeneracy effect on the potential surface. We have used two basis sets, 3-21G and [6s4p1d] basis set⁵, and

SCF, six-configuration SCF, MP4 and full valence-electron CI methods. Five-component *d*-functions were assumed throughout. The published low vibrational frequencies of Na_3^+ suggest that, unlike in H_3^+ , the gap between the frontier MO's (constructed mainly from the 3s AO's) may be rather small and the single-determinant approach need not be adequate in this case. To check this effect we performed the six-configuration SCF (6C-SCF) calculations, in which all singly and doubly excited configurations for the three frontier MO's were assumed.

Two sets of vibrational coordinates were used: the usual curvilinear stretching coordinates

$$\Delta r_i = r_i - r_e, \quad i = 1, 2, 3 \quad (1)$$

where r_e is the equilibrium bond length, and

$$y_i = 1 - \exp(-a\Delta r_i), \quad (2)$$

where a is a molecular adjustable parameter. About 50 data points were calculated for each potential surface. An expansion of the following form was fitted through them:

$$V = \frac{1}{2} \sum_{i,j} f_{ij} y_i y_j + \frac{1}{6} \sum_{i,j,k} f_{ijk} y_i y_j y_k. \quad (3)$$

For comparison the calculated energies were also fitted to the expansion in the Δr_i coordinates. For the 3-21G surface the optimum fit was obtained for $a = 0.71 \text{ \AA}^{-1}$. Since the change in a up to 10% had only a marginal effect on the standard errors of the adjusted *f* parameters, a was fixed at 0.71 and this value was also used for the other surfaces. The potential surfaces obtained in this fashion were used in the variational rotation-vibration calculations, following closely the procedure developed previously⁴ for H_3^+ .

RESULTS AND DISCUSSION

The calculated optimum geometries, energies, and basic spectroscopic constants are summarized in Table I. The geometry and spectroscopic constants obtained with the MP4 and full 2 electrons CI procedures are in a fair agreement. The optimized parameters used in the potential function of Eq. (3) and for the analogous expansion in the Δr_i coordinates are summarized in Table II. The theoretical model assumed is justifiable only when the energy of the linear structure with respect to the optimum \mathcal{D}_{3h} geometry is considerably higher than the vibrational quanta. To check it we calculated also the linear structures assuming the r_e values from Table I. In the SCF/3-21G, 6C-SCF/3-21G, SCF/[6s4p1d], MP4/[6s4p1d] and 2e full CI/[6s4p1d] approaches, respectively, the linear structures were higher in energy by 6 506.6, 2 634.1, 6 652.1, 4 908.7,

and 4 136.0 cm^{-1} , which is more than an order of magnitude higher than harmonic frequencies of about 100 and 140 cm^{-1} .

In our literature search for the *ab initio* calculations of vibrational energies of Na_3^+ we have found only two calculations in the harmonic approximation and one study taking into account anharmonicity. Eades et al.⁶ obtained 92 and 138 cm^{-1} from the SCF/[6s4p] calculations. Martins et al.⁷ used the pseudopotential and the local-spin-density approximations and arrived at harmonic frequencies of 107 and 147 cm^{-1} .

TABLE I
Calculated molecular parameters for the equilibrium (\mathcal{D}_{3h}) geometries of Na_3^+

Quantity ^a	Method				
	SCF/3-21G	6C-SCF/3-21G	SCF/[6s4p1d]	MP4/[6s4p1d]	2e-Cl/[6s4p1d]
Energy, a.u.	-482.438702	-482.456300	-485.335211	-485.737767	-485.365827
r_c , a.u.	6.781	6.886	6.720	6.652	6.658
$\omega(A'_1)$, cm^{-1}	142.3	135.0	144.0	148.3	147.7
$\omega(E')$, cm^{-1}	105.6	97.2	108.0	106.5	105.8

^a The observed A'_1 and E' fundamental wavenumbers are 139.6 ± 0.5 and $101.5 \pm 0.5 \text{ cm}^{-1}$ (ref.⁸).

TABLE II
Potential function parameters obtained by fitting to the calculated energies

Polynomial terms	Coefficients in different approaches				
	SCF/3-21G	6C-SCF/3-21G	SCF/[6s4p1d]	MP4/[6s4p1d]	2e-Cl/[6s4p1d]
Δr_i^2 , $\text{cm}^{-1} \text{\AA}^{-2}$	5 048.2	4 419.3	5 251.9	5 249.3	5 235.8
$\Delta r_i \Delta r_j$, $\text{cm}^{-1} \text{\AA}^{-2}$	-151.11	-28.283	-200.67	-56.582	-45.890
Δr_i^3 , $\text{cm}^{-1} \text{\AA}^{-3}$	-7 276.5	-7 197.6	-7 581.9	-7 882.0	-8 350.2
$\Delta r_i^2 \Delta r_j$, $\text{cm}^{-1} \text{\AA}^{-3}$	-164.22	-252.29	-274.67	-195.41	-239.65
$\Delta r_i \Delta r_j \Delta r_k$, $\text{cm}^{-1} \text{\AA}^{-3}$	405.39	188.38	469.44	334.12	345.51
σ^a , cm^{-1}	8.90	18.55	13.80	15.27	22.24
y_i^2 , cm^{-1}	9 813.7	8 364.2	10 128	10 092	9 986.2
$y_i y_j$, cm^{-1}	-329.80	-57.174	-418.06	-92.447	-74.272
y_i^3 , cm^{-1}	7 095.4	1 607.3	6 683.9	4 838.6	1 868.3
$y_i^2 y_j$, cm^{-1}	-724.06	-443.81	-894.17	-308.53	-308.76
$y_i y_j y_k$, cm^{-1}	1 497.4	970.56	1 597.7	1 267.3	1 424.9
σ^a , cm^{-1}	4.34	7.32	4.34	2.47	2.27

^a Standard deviation.

Carter and Meyer⁸ performed valence-shell CI calculation with a pseudopotential for the Na cores. By means of vibrational variational calculations applied to this surface they arrived at the following lowest vibrational levels (in cm^{-1}): A_1' 0.00; E' 99.95; A_1' 140.45; A_1' 198.90; E' 199.72.

Our calculated vibrational energies are listed in Table III. The effect of anharmonicity is surprisingly small. Surprising is also the almost uniform prediction by different

TABLE III
The calculated^a vibrational energies for Na_3^+ (in cm^{-1})

Symmetry	SCF/3-21G	6C-SCF/3-21G	SCF/[6s4p1d]	MP4/[6s4p1d]	2e-Cl/[6s4p1d]
A_1'	0.0	0.0	0.0	0.0	0.0
E'	104.94	95.37	107.00	105.14	104.36
A_1'	141.06	133.42	142.10	146.71	145.96
A_1'	208.88	189.69	212.97	209.23	207.63
E'	209.71	190.55	213.80	210.15	208.53
E'	245.17	227.68	248.24	250.93	249.26
A_1'	281.56	266.13	283.62	292.84	291.28
E'	312.65	283.84	318.65	313.19	310.73
A_1'	314.26	285.49	320.38	315.00	312.49
A_2'	314.32	285.58	320.44	315.07	312.58
z.p.e. ^b	176.61	163.58	179.25	179.74	178.81

^aCalculated using 165 Morse-oscillator basis functions; the observed A_1' and E' fundamental wave-numbers are 139.6 ± 0.5 and $101.5 \pm 0.5 \text{ cm}^{-1}$ (ref.⁹). ^bZero point energy.

TABLE IV
The calculated^a rotational and centrifugal distortion constants for Na_3^+ (in cm^{-1})

Constant	Ground state	$v_1 = 1$ state	$v_2 = 1$ state ^b
B_v	0.118229	0.117935	0.118083
C_v	0.058915	0.058765	0.058741
$D_v^{JJ} \cdot 10^7$	-4.504	-4.489	
$D_v^{JK} \cdot 10^7$	7.546	7.500	
$D_v^{KK} \cdot 10^7$	-3.426	-3.387	
$\eta_2^1 \cdot 10^5$			-1.188
$q_2 \cdot 10^3$			-1.128
σ^c	$1 \cdot 10^{-5}$	$1 \cdot 10^{-5}$	$1 \cdot 10^{-3}$

^aCalculated using the MP4 potential energy function. ^bData processed using the Watson's theory (ref.¹⁰).

^cStandard deviation.

methods, except for the six-configuration SCF calculations that give somewhat lower energies. As the comparison of SCF/3-21G and 6C-SCF/3-21G vibrational energies suggests, this energy lowering may be assigned to non-dynamical correlation effects. This explains why also single-reference MP4 and 2e-CISD treatments give vibrational energies that are by several wavenumbers higher than experiment⁹. Rotational energy levels, evaluated up to $J = 10$, have been fitted quantitatively using the standard spectroscopic rotational and centrifugal distortion constants¹⁰. The fitted constants, illustrated here by the MP4 results for the lowest vibrational states (see Table IV), indicate a rather strong rigidity of the Na_3^+ cluster.

Some of the rotation-vibration calculations were carried out on the Cyber 960 installation at the computer center of the Justus Liebig University Giessen, whose services are gratefully acknowledged. The work of P. J. was supported by the Deutsche Forschungsgemeinschaft (through grant No. Je 144/2-3), by the Fonds der Chemischen Industrie, by the Dr. Otto Röhm Gedächtnissiftung, and by the Fritz Thyssen-Stiftung.

REFERENCES

1. Bonačič-Koutecký V., Fantucci P., Koutecký J.: *Chem. Rev.* **91**, 1035 (1991) and references therein.
2. Bonačič-Koutecký V., Boustani I., Guest M., Koutecký J.: *J. Chem. Phys.* **89**, 4861 (1988).
3. Carney G. D.: *Mol. Phys.* **39**, 923 (1980).
4. Špirko V., Jensen P., Bunker P. R., Čejchan A.: *J. Mol. Spectrosc.* **112**, 183 (1985).
5. Martin R. L., Davidson E. R.: *Mol. Phys.* **35**, 1713 (1978).
6. Eades R. A., Hendewerk M. L., Frey R., Dixon D. A., Gole J. L.: *J. Chem. Phys.* **76**, 3075 (1982).
7. Martins J. L., Car R., Buttet J.: *J. Chem. Phys.* **78**, 5646 (1983).
8. Carter S., Meyer W.: *J. Chem. Phys.* **93**, 8902 (1990).
9. Thalweiser R., Vogler S., Gerber G.: Unpublished results.
10. Watson J. K. G.: *J. Mol. Spectrosc.* **103**, 350 (1984).

Translated by the author (P. Č.).